Groundwater recharge and trends: comparative analysis of sedimentary and basement aquifers in Benin

Results obtained thanks to GRIBA project

KOTCHONI, V., VOUILLAMOZ, J.M., BOUKARI, M., LAWSON, F.M.A., ADJOMAYI, P., TAYLOR, R.G.

Université d'Abomey-Calavi/Institut National de l'Eau, Abomey-Calavi, Benin

Institut de Recherche pour le Développement, IRD, Grenoble, France

PROTO, Cotonou, Benin

Abstract N° 1857
PLAN

• INTRODUCTION

• METHODOLOGY

• RESULTS

• CONCLUSION AND OUTLOOKS
INTRODUCTION

• Groundwater in Benin
 – Main resource for domestic needs
 – 950 new boreholes/year (1996-2012)
 – Recharge poorly known
 ✓ Quantification
 ✓ Trend
INTRODUCTION

• Groundwater in Benin
• This study aims at:
 – Quantifying the recharge
 ✓ Hard rocks (Precambrian)
 ✓ Mio-pliocene (Continental Terminal)
 ✓ Quaternary sediments
 – Analyzing the trend in recharge
 ✓ Longer chronicles of SWL in Benin
 ✓ Medium frequency measurement time step
MATERIAL AND METHOD

• Material
 – 3 chronicles of 17-25 years
 – 10-days time step
 – Rainfall records (located at 0-14 km)
MATERIAL AND METHOD

- Material
- Method
 - Water Table Fluctuation Method

\[
R_{\Delta t} = \left(\frac{\Delta H^+}{\Delta t} + \frac{\Delta H^-}{\Delta t} \right) \cdot S_y
\]

- \(R_{\Delta t} \) = Recharge during \(\Delta t \)
- \(\Delta H^+ \) = Positive WL variation
- \(\Delta H^- \) = Groundwater outflow
- \(S_y \) = Specific yield
MATERIAL AND METHOD

• Material

• Method
 - Water Table Fluctuation Method
 - Trend analysis
 • Linear trend
 • Mobile average (5 years)
 • Standardized index: \(SPI = \frac{X_i - X_m}{S_i} \)

\(Xi = \text{annual rainfall} \)
\(Xm = \text{mean rainfall} \)
\(Si = \text{Standard deviation} \)
RESULTS

- Quaternary sediments (unconsolidated sandstone)
 - \(170\text{mm} < \text{Recharge} < 700\text{mm}\)
 - \(\text{Recharge} = 34\%\) of Rainfall (annual)

Annual recharge strongly controlled by rainfall
RESULTS

• Quaternary sediments (unconsolidated sand)
 – 170mm < Recharge < 700mm
 – Recharge = 34% of Rainfall (annual)
 – Trend 1991-2014:
 ➢ Rainfall → +13 mm/year
 ➢ Recharge → +11 mm/year

Annual recharge strongly controlled by rainfall
Trend in recharge controlled by trend in rainfall
RESULTS

• Continental Terminal (Sandstone)
 – 38mm < Recharge < 580mm
 – Recharge = 21% of Rainfall (annual)
 – Trend 1994-2014:
 ➢ Rainfall \(\rightarrow \) +16 mm/year
 ➢ Recharge \(\rightarrow \) +7 mm/year

Annual recharge strongly controlled by rainfall
Trend in recharge controlled by trend in rainfall
RESULTS

• Hard rock
 – 56mm < Recharge < 85mm
 – Recharge = 6% of Rainfall (annual)
 – Trend 1997-2015:
 ➢ Rainfall \(\rightarrow\) +1.5 mm/year
 ➢ Recharge \(\rightarrow\) -0.8 mm/year

Groundwater storage in equilibrium with rainfall
No trend
CONCLUSION AND OUTLOOKS

• Conclusion
 – Recharge \rightarrow geology
 – Recharge \rightarrow rainfall
 – Trend in recharge \rightarrow trend in rainfall

<table>
<thead>
<tr>
<th></th>
<th>Mean rainfall (mm)</th>
<th>Mean recharge (mm)</th>
<th>Recharge/rainfall</th>
<th>Trend in rainfall (mm/year)</th>
<th>Trend in recharge (mm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary sediment</td>
<td>1251</td>
<td>460</td>
<td>34%</td>
<td>+13mm</td>
<td>+11mm</td>
</tr>
<tr>
<td>Continental Terminal</td>
<td>1215</td>
<td>256</td>
<td>21%</td>
<td>+16mm</td>
<td>+7mm</td>
</tr>
<tr>
<td>Hard rock</td>
<td>1176</td>
<td>65</td>
<td>6%</td>
<td>No trend</td>
<td>No trend</td>
</tr>
</tbody>
</table>
CONCLUSION AND OUTLOOKS

• Conclusion
 – Recharge → geology
 – Recharge → rainfall
 – Trend in recharge → trend in rainfall

Aquifer storage vulnerable to rainfall change

<table>
<thead>
<tr>
<th></th>
<th>Mean rainfall (mm)</th>
<th>Mean recharge (mm)</th>
<th>Recharge/rainfall</th>
<th>Trend in rainfall (mm/year)</th>
<th>Trend in recharge (mm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary sediment</td>
<td>1251</td>
<td>460</td>
<td>34%</td>
<td>+13mm</td>
<td>+11mm</td>
</tr>
<tr>
<td>Continental Terminal</td>
<td>1215</td>
<td>256</td>
<td>21%</td>
<td>+16mm</td>
<td>+7mm</td>
</tr>
<tr>
<td>Hard rock</td>
<td>1176</td>
<td>65</td>
<td>6%</td>
<td>No trend</td>
<td>No trend</td>
</tr>
</tbody>
</table>

• Outlooks
 – Link geology/recharge?
 – Linear process (recharge/rainfall)?
THANKS